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Abstract.

For navigation in Baltic Sea ice during winter season, parameters such as ice edge, ice concentration, ice thickness, ice

drift and degree of ridging are usually reported daily in the manually prepared Ice Charts, which provide icebreakers essentail

information for route optimization and fuel calculations. However, manual ice charting requires long analysis times and detailed

analysis is not possible for large scale maps (e.g. Arctic Ocean). Here, we propose a method for automatic estimation of degree5

of ridging density in the Baltic Sea region, based on RADARSAT-2 C-band dual-polarized (HH/HV channels) SAR texture

features and the sea ice concentration information extracted from the Finnish Ice Charts. The SAR images were first segmented

and then several texture features were extracted for each segment. Using the Random Forest classification, we classified them

into four classes of ridging intensity and compared them to the reference data extracted from the digitized Ice Charts. The

overall agreement between the ice chart based degree of ice ridging (DIR) and the automated results varied monthly, being10

83 %, 63 % and 81 % in January, February and March 2013, respectively. The correspondence between the degree of ice

riding of the manual Ice Charts and the actual ridge density was good when this issue was studied based on an extensive field

campaign data in March 2011.

1 Introduction

Navigation in sea ice is naturally hampered by rapid changes in the environmental conditions. Thus, it is essential for winter15

time shipping and off-shore operations to get reliable and up-to-date information on the prevailing ice conditions. The most

important sea ice related information are the location of the sea ice edge, sea ice types, sea thickness and concentration and

sea ice deformation. Without detailed sea ice information, navigating through heavily ridged sea ice is very difficult and time

consuming or even impossible.

The Baltic Sea is a semi-enclosed brackish sea water basin in Northern Europe. The ice cover in the Baltic Sea usually begins20

to form in November, and has its largest extent between January and March, Seina and Peltola (1991). The normal ice break-up

starts in April and the ice melts completely by the beginning of June. The maximum annual ice cover ranges from 12% to 100%

of the whole Baltic Sea area, and the average is 40%, Seina and Palosuo (1996). During the last decades there has prevailed

a clear decreasing trend in the maximum ice extent although the trend has not been a subject for a detailed investigation. The

sea ice in the Baltic Sea can be divided into fast ice and drift ice. Fast ice appears in the coastal and archipelago areas. Drift25
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ice has a dynamic nature due to forcing by winds and currents. The motion of drift ice results in an uneven and broken ice

field with distinct floes up to several kilometers in diameter, leads and cracks, brash ice barriers, rafted ice and ice ridges. The

upper limit for thermodynamically grown ice is 70 cm or less during most winters, Palosuo et al. (1982). The thickness of ice

ridges is typically 5 to 15 m, Lepparanta and Hakala (1992). The salinity of the Baltic Sea ice is typically from 0.2 to 2 ‰

depending on the location, time, and weather history, Hallikainen (1992). Synthetic Aperture Radar (SAR) satellites such as5

RADARSAT-2 (RS-2) and Sentinel-1 (S-1) play a major role in operationally monitoring the ice conditions in Baltic Sea every

winter. SAR imaging is practically independent of the atmosphere conditions (e.g. cloud cover) and solar illumination, and

thus, can be used in continuous automated sea ice monitoring . However, radar backscatter information in the SAR imagery

cannot easily be directly linked to the different ice types or ice properties at a given location, and the expertise of an trained ice

analyst is then required.10

In the Baltic Sea, daily ice charts prepared by the Finnish Ice Service (FIS) analysts in winter time provide a daily source of

information upon the ice conditions by assigning a classification of ice types and other ice properties to the ice chart polygons

descibed by well-defined symbols and coloring of the polygons. They are based on visual interpretation of the SAR imagery

as the principal source of ice information. Currently, RS-2 and S-1 SAR imagery with a wide coverage (e.g. RS-2 ScanSAR

Wide Mode with 500 by 500 km image size) are used. The SAR imagery is complemented by visible and thermal infrared15

imagery from Moderate Resolution Imaging Spectroradiometer (MODIS), in-situ observations, sea ice information messages

from icebreakers, and data from sea ice models.. The ice chart polygons are defined by the ice analysts and they represent

uniform ice areas with similar ice parameters. Parameters assigned for each polygon are ice concentration, level ice thickness

range and average, and the the degree of ice ridging (DIR). The FIS ice analysts estimate the DIR category mainly using the

SAR imagery, and with additional information on the ice drift based on successive SAR images and results of sea ice models20

(Figure 1). The main criteria for the visual DIR estimation from the SAR imagery are the SAR backscattering and its visible

patterns (SAR texture). Because the visual interpretation is so essentail in the manual ice charting process, a certain amount of

subjectivity and inconsistency by different ice analysts is inevitable.

In this paper we propose an automation of the DIR estimation process based on RadarSat-2 dual-polarized (HH/HV) C-

band SAR data using data acquired under cold conditions during the winter season 2012-2013 and using the FIS Ice Charts as25

reference data. In Section 2.1 we will discuss on the different DIR categories used by FIS. As a tool in the DIR classification

we use the Random Forest (RF) algorithm which will explained in detail in Section 3.3. Using the automated classification

procedure we target to an efficient exploitation of the RS-2 SAR data and an improved quality (pixel level accuracy and

consistency between different analysts) of the ice charts, by means of increased spatial and temporal resolutions.

Under cold weather conditions when the snow cover on sea ice is dry the ice surface scattering has been observed to be the30

dominant component in the total co-polarized backscattering measured by radars operating at C-band with incidence angles

below 45◦, Carlström and Ulander (1995); Dierking et al. (1999). If the ice surface is very smooth and salinity < 0.5 psu,

which typically is the case for level fast ice in the Baltic Sea, and the backscattering from ice-water interface and ice volume is

significant. The surface backscattering from level ice is controlled by the statistics of the small-scale roughness as well as the

salinity of the ice surface. If sea ice is deformed, the large-scale surface roughness alters the geometry of the surface and, hence,35
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also modifies the backscattering. Empirical measurements of the Baltic Sea C-band SAR ice backscattering coefficient (σo)

have shown that the variation in the large-scale surface roughness mostly modulates σo and image texture although changes in

the small-scale roughness are also significant, Carlström and Ulander (1995); Dierking et al. (1999); Mäkynen et al. (2004).

The σo contrast between level ice and deformed ice is on average larger at C-band cross-polarization than at co-polarization,

Mäkynen et al. (2004). The standard deviation of σo was observed to be larger for deformed ice types (mixtures of level ice,5

ice ridges, rubble) than for level ice types and brash ice in Mäkynen et al. (2004). Radar backscatter in C-band SAR imagery

is not directly related to the sea ice thickness, but at least in the Baltic Sea it is possible to estimate the thickness of deformed

ice under dry snow conditions through a statistical relationship between ice freeboard, level ice thickness and σo, Similä et al.

(2010). The variance of the mean freeboard, i.e. large scale surface roughness, increases with increasing average freeboard,

and as the surface roughness increases σo also typically increases. In general, these previous studies on sea ice σo signatures10

have shown that there is a relation between C-band σo and DIR, but further studies are needed to better quantify this relation.

Many sea ice classification systems just perform classification to open water and different ice types, such as new ice, first-

year-ice, multiyear-ice, but DIR is not explicitly estimated in more detail. Classification schemes utilizing σo and SAR texture

have been presented e.g. in Soh (2004); Sandven et al. (2012); Barber et al. (1991); Clausi (2001). A progressive scheme

presented e.g. in Soh (2004) utilizes segmentation and multiple segment-wise features, including texture. Classification of ice15

types based on single-polarization C-band SAR backscattering has been studied e.g. in Karvonen (2004); Shokr (2009). In

Soh (1999) the performance of texture measures based on Gray Level Co-Occurrence Matrices (GLCM’s) were studied for sea

ice classification into seven classes, which were based on human visual inspection. Sea ice SAR classification using the world

meteorological organization (WMO) ice categories (stage of development) WMO (2010) has been studied e.g. in Clausi (2001);

Deng and Clausi (2005); Maillard et al. (2005); Yu and Clausi. (2007); Clausi (2010); Ochilov et al. (2012). These approaches20

are based on SAR segmentation and different SAR features, including texture ones. Some of the methods also combine the ice

analyst analysis and an automated analysis. A system capable of a semi-automated segmentation and enhanced classification

with a digitized ice chart as an input is presented in Clausi (2010). The ice categories in these studies do not either explicitly

or uniquely include DIR classification.

2 Data Sets and Processing25

The Baltic Sea ice season 2012/2013 was average but the turning point of the winter was late. The weather began to cool off

at the end of the first week of January and the extent of ice increased. In the last week of January the strong winds moved the

ice fields and the mild weather melted ice. In the beginning of February the weather continued similar – at night new ice was

formed which the winds then broke during the day. Towards the end of February the weather cooled down and new ice was

formed also in the Gulf of Finland. In the beginning of March cold arctic air started to flow to Scandinavia and the extent of30

ice began to grow. The whole March was extremely cold. In the 15th of March the extent of ice reached 177 000 km², which

was the maximum of the ice winter. From then on the cold nights formed new ice but sunny days melted them and the extent

of the sea ice did not increase any more.
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2.1 Ice charts and degree of ridging

Our reference data set consists of the daily FMI FIS manual ice charts over the Baltic Sea. In the ice charts the degree of

ice ridging (DIR) is used to categorise ice types in a way that is relevant for the difficulty of navigation. DIR is assigned

as a qualitative numeral, ranging from 1 to 5, to each ice chart polygon. DIR value 1 refers to level ice or rafted ice. Small

ridged areas in the middle of level ice are also included into DIR 1. Values 2 and 3 represent lightly ridged ice and ridged ice,5

respectively. The most heavily ridged ice is assigned DIR value 4. DIR 5 indicates brash barrier while this particular category

was not present in our data set. By visual inspection of the RS-2 and S-1 SAR wide swath imagery with a spatial resolution

of approximately 100m resolution it is not possible to describe the ridging intensity quantitatively. However, it is feasible to

assign categories of ridged ice for extended areas for which the actual ridging intensities differ. For some justification of the

meaningfulness of the areal DIR values see our comparison with the 2011 field data set in Section 4.1.10

The DIR information in the FIS ice charts is typically reported for rather large areas (hundreds of square kilometers) with

usually incomplete spatial and temporal accuracy as the ice charts are issued only once daily in the afternoon and are based

on the information gathered since the previous afternoon. Consequently, fresh SAR imagery with updated sea ice conditions

can often be disregarded if acquired soon after the ice chart has been released for a particular day, and thus the ice chart may

become outdated compared to SAR imagery.15

The ice charts are also saved as numerical grids from the ice charting software. For the gridded product they are digitized

into grids with a resolution of approximately 1 nautical mile (NM). In the grid format the ice thickness, ice concentration and

DIR value assigned to each ice chart polygon are included. Additionally the sea surface open water surface temperature is

included in the ice chart grids. This practice slightly differs from the classes defined by the ice charting guidelines in Canadian

Ice Service, MANICE (2005), where the ice is classified based on the stage of development and indicated by the so-called20

WMO egg codes, WMO (2010).

No long-term studies between ice chart degrees of ice ridging and the actual ridging statistics have been carried out although

field campaigns to measure ridging in the Bay of Bothnia started already in late 1970’s by shipborne laser profilers and the

first extensive airborne laser profiler campaign was conducted in 1988, see Lewis et al. (1993). Results from three other

campaigns in the 1993, 1994 and 1997 are summarised in Lensu (2003). The campaign results discussed in this paper are from25

a campaign on 2-7 March 2011 with approximately 600 km of measurement lines. Then the measurements were collected

by a helicopterborne electromagnetic (HEM) device which combines laser profiling and inductive distance measurement to

the ice-water interface. Hence, the HEM measurements give a as comprehensive understanding on ridging as is obtainable

from linear profiles. They provide the total thickness and the horizontal resolution of the EM instrument is also sufficient for

resolving ridge keels, Haas et al. (2009). The ice season 2010-2011 was severe, with a maximum ice extent of 309 000 km2.30

In the Bay of Bothnia mid–basin pack the level ice thicknesses reached 60 cm which somewhat decreased ridging from what

would have been expected during an average winter with similar wind conditions. The ridging generally intensified towards

the northwestern part of the Bay of Bothnia and towards fast ice edge, and there were coastal rubble fields generated by the

closing of flaw leads covered by thinner ice.
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2.2 SAR image mosaics

The SAR imagery used in this study were RADARSAT-2 ScanSAR wide Wide (SCWA) dual-polarized imagery with the

HH/HV polarization combination. The nominal size of an RS-2 SCWA image is around 500 by 500 km, and the pixel size

is 50 m. The spatial resolution is around 73-163 m by 100 m (range by azimuth). The incidence angle (θo) varies from 20

to 49 degrees. The equivalent number of looks (ENL) is some larger than six. The noise equivalent σo at both HH- and HV-5

polarisation is around -28 ± 2.5 dB and the absolute accuracy of σo is better than 1 dB MDA (2014).

The acquired RS-2 SAR imagery covered the whole Baltic Sea ice season in 2012-2013, with a total number of 538 SAR

images between December 7 2012 and April 16 2013. The amount of SAR images during the test period from January to March

was 342, i.e. on average over three SAR scenes per day. For our test period we selected the months during which the SAR

images were mostly acquired under dry snow conditions. Hence the dominant backscattering source was the sea ice surface10

and we could expect a statistical relationship between σo and DIR as reported in Carlstr¨öm and Ulander (1995); Dierking

et al. (1999); Similä et al. (2001); Mäkynen et al. (2004); Similä et al. (2010). Because the ice conditions in the northern parts

of the Baltic Sea were the most severe, we restricted our study area to northward from the latitude of 61◦N, covering the entire

Bay of Bothnia and largely the Sea of Bothnia.

The preprocessing of the RS-2 SCWA images consisted of calibration (calculation of σo
HH and σo

HV ), georectification,15

calculation of the incidence angle θo, and land masking. First the data were rectified into the Mercator projection in 100

m resolution. This georectification is compatible with the navigation system of the Finnish and Swedish icebreakers. In this

Mercator projection the reference latitude is 61 degrees 40 min (N).

As the SAR σo is dependent on θo, an incidence angle correction is necessary before the classification of the SAR images

with wide θo range, such as RS-2 SCWA images. For the HH-polarization images, an incidence angle correction method20

described in Mäkynen et al. (2002) was applied. This incidence angle correction maps the σo values using a linear dependence

for the σo in dB-scale to a predefined θo value θ0
R. In this case, the fixed θo

R of 30◦ was used. At the HV-band the SAR

backscattering coefficient values are close to the instrument noise floor (around -28 dB for RS-2 ScanSAR Wide mode), and the

noise floor (noise equivalent σo) varies along the across-track direction. The noise floor modulates the (low) HV channel signal

leading to clearly visible stripes (artifacts) at HV band. These stripes complicate both the visual and automated interpretation25

of the SAR data. We applied a statistical noise reduction procedure at the RS-2 HV channel. The procedure is described in

detail in Karvonen (2015).

The rectified and incidendence angle corrected images were land masked. The land masking was based on the GSHHG

(Global Self-Consistent Hierarchical, High-resolution Geography database from the National Oceanic and Atmospheric Ad-

ministration, NOAA) coastline data, Wessel and Smith (1996).30

Then the SAR images were segmented and the segmentwise features were calculated in the resolution of 100 m, for details

see Sections 3.1 and 3.2. Due to the large size of SAR images the HH and HV images and also the feature images were down-

sampled into 500 m resolution. The daily SAR mosaics were constructed after receiving the morning RS-2 image acquisitions

such that the most recent imagery is overlaid the older imagery. The test area was typically covered by RS-2 every 1 to 2 days.
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Delays up to two days are possible, however, usually the delays in the test area are one day or less. The SAR mosaics always

represented the latest SAR information at each location.

The equivalent number of looks (ENL), noise equivalent σo and autocorrelation between neighboring pixels in the rectified

images were studied using homogeneous areas of size 3.1x3.1 km visually selected from the images over open water areas

with a weak texture. The ENL was around 9.5 for the whole θo range as the resolution 100 m. Thus, the radiometric resolution5

was around 1.2 dB and the standard deviation (std) of fading was 1.4 dB. The autocorrelation coefficient between the adjacent

100 m pixels was on average only 0.18.

2.3 Correspondence between ice charts and SAR mosaics

We found that often the ice charts did not correspond to the SAR mosaics of the same day. This has occurred because some part

of the daily SAR mosaic was a few of days old or because the SAR mosaic was updated after the preparation of the manual ice10

chart. We note that FIS also uses MODIS data when producing a new ice chart. Due to the inconsistencies between ice charts

and SAR data we examined every DIR chart during the whole test period from the 1 January to 31 March and compared them

visually to the corresponding SAR mosaic.

This process resulted in the rejection of many of the ice charts during the test period. In our analysis we included only those

days in which the DIR charts appeared to be in overall agreement with the corresponding SAR mosaics. There were 10 such15

ice charts in January, 15 in February and 12 in March.

3 Methodology for estimation of the degree of ice ridging

3.1 SAR Image segmentation

In order to perform the segmentation we combined the HH- and HV-polarized RS-2 SCWA images data using the Princi-

pal Component Analysis (PCA) technique. PCA is a statistical procedure that uses an orthogonal transformation to convert20

an image of possibly correlated pixel values into an image of linearly uncorrelated pixels. The values of these pixels are

called principal component scores. We selected the first PCA image (corresponding to the largest PCA eigenvalue) for the

segmentation because it explains most of the variation contained in the HH- and HV-images. This allowed us to speed up the

segmentation which for large SAR data sets requires a considerable amount of time and computing resources.

For data segmentation, there are many algorithms available, but very few that can work well with SAR imagery because of25

the small dynamic σ0 range, [-22, - 7] dB is typical HHl SAR C-band images and [-28, - 24] dB for HV images. There does

not exist a clear separation between different sea ice types based on the magnitude of σ0 , and the presence of the speckle

complicates the segmentation task further. In the segmentation we truncated the HH range to [-22, - 8] dB. Here, the first PCA

image from the HH- and HV-polarization SAR imagery was segmented with a Markov Random Field approach, Rue et al.

(2005), and optimized with an Modified Metropolis Dynamics algorithm, similar as in Kato et al. (1992, 1994); Berthod et al.30

(1996). This stochastic method has been demonstrated to provide a better segmentation than a deterministic one, e.g. Iterated
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Conditional Mode (ICM) by Besag (1974)), for typical sea ice SAR imagery, Ochilov et al. (2012); Deng and Clausi (2004,

2005). Markov Random Field (MRF) approach relies less on the initial segmentation, and also takes into account the global and

local statistics of a pixel. This guarantees that pixels with similar intensities would not be treated in the same way in different

regions of an image I , if the local spatial interactions differ in the two regions.

For example, to select the best new label L̂ for a group of neighborhood pixels (cliques) in a site s, is equivalent to5

maximize the probability distribution of labels in site s, conditioned by the a-priori label (L). In other words, L̂MAP =

argmaxL∈ΩP (L|F = f). where Ω is the set of labels, (F = f) is feature vector, (L) is the segmented result conditioned

by the feature vector. For each s, the cliques potential depends on the local configuration and type (size, shape, and possibly

orientation). For simple cliques (formed by the closest neighbored pixels), their potential function Vc can be reduced to only

two states:10

Vc(L) = βδ(Li,Lj) = +1ifLi = Lj ;−1ifLi 6= Lj . (1)

The site’s energy would simply be the sum of all cliques potential:

U(L) =
∑

c∈C

Vc(L). (2)

For more complex cliques (higher order neighbours), their potential would depend on the computed local mean (µLs ) and

variance (σ2
Ls

). The labels (classes) would then be represented by Gaussian distributions:15

P (fs|Ls) =
1√

2πσLs

exp

(
−(fs−µLs)2

2σ2
Ls

)
(3)

If we consider the probability distribution of labels in s a Markov Random Field with P (L|F = f)> 0, we can also treat it

as a Gibbs form Besag (1974) :

P (L) =
1
Z
exp(−

∑

c∈C

Vc(L)), (4)

where Z is the normalization constant and Vc(L) is the clique’s potential for the current label state.20

For this example the (logarithmic) energy is

U(L) =
∑

S

(log((2π)1/2σLs
) +

(fs−µLs
)2

2σ2
Ls

+
∑

s,r

βδ(ws,wr), (5)

where the homogenity of the region is controlled by the β parameter. and

P (L|F = f) =
1
Z

exp(−U(L))→ L̂MAP = argmaxLP (L|F = f) = argminLU(L). (6)

These kind of functions can then be optimized by various methods, one being the simulated annealing method Kirkpatrick25

(1983), Cerny (1985), where a slow decrease in the probability of accepting worse solutions occurs as the algorithm searches

the solution space. The method used here is an adaptation of the Metropolis-Hastings algorithm introduced in Metropolis et al.
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(1953) or shortly Metropolis algorithm which was created as a Monte Carlo method to generate sample states of a thermo-

dynamic system. In the algorithm the labeling is also dependent on the control variable called temperature T . If the energy

function U(L) value increases, the label is changed with a probability dependent on T and increase of U(L) (exp(−∆U/T )).

To perform the MRF segmentation, we first need to initialize the Gaussian parameters for the labels and also the number

of labels. This is performed automatically for each SAR image separately. First the histogram of the SAR image is computed,5

and then the Expectation-Maximization (EM), Dempster et al. (1977), algorithm is applied to decompose the histogram into

a Gaussian decomposition. The number of Gaussians in the decomposition is initialized to a small minimum value, e.g. two,

and then iteratively increased until the EM decomposition and the histogram are similar enough with each other. We measure

the similarity by the coefficient of correlation r. We stop the EM-algoritm if either r exceeds t 0.97 or if we have more than

nine labels in the image. We initially label the image pixels based on the EM classification , i.e. we assign the label with10

highest probability of the N different Gaussian distributions Gk(x) for a pixel. After this labeling scheme we can run the MRF

segmentation.

An example of segmentation result for the Bay of Bothnia is shown in Fig. 2 together with the original HH and HV SAR

mosaics.

The next step in the SAR analysis was to compute several SAR quantities for the obtained segments.15

3.2 SAR image features

Using the computed SAR features and the DIR values from FMI ice charts we studied the classification of DIR categories

for our test period . The following SAR features were computed and their efficiency in DIR classification was studied. Each

feature value is a median value of the feature computed over a single segment. Their abbreviations are inside the brackets:

1. HH-band SAR backscattering coefficient (σo
HH ), with incidence angle correction applied.20

2. HV-band SAR backscattering coefficient (σo
HV ), with incidence angle correction and noise level equalization applied.

3. HH-band entropy (EHH ), computed for the full-resolution SAR (100m) in windows with a radius of 5 pixels.

4. HV-band entropy (EHV ) , computed for the full-resolution SAR (100m) in windows with a radius of 5 pixels.

5. HH-band autocorrelation (ACHH ), computed for the full-resolution SAR (100m) in windows with a radius of 5 pixels.

6. HV autocorrelation (ACHV ), computed for the full-resolution SAR (100m) in windows with a radius of 5 pixels.25

7. HH channel coefficient of variation (CVHH ), computed in full resolution for windows with a radius of 5 pixels).

8. HV channel coefficient of variation (CVHV ), computed in full resolution for windows with a radius of 5 pixels.

9. Edge density for HH channel (EDHH ).

10. Edge density for HV channel (EDHV ), scaling: 1000 ∗Ne/A (Ne is the number of edge pixels and A is the segment

area).30
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11. Segment size (SSZ).

12. HH-channel kurtosis (KHH ), computed in a window with radius of 5 pixels in the full SAR resolution.

13. HV-channel kurtosis (KHV ), computed in a window with radius of 5 pixels in the full SAR resolution.

Additionally we extracted the segment mean of sea ice concentration (SIC) from the FMI ice charts.

Coefficient of variation was computed separately for HH and HV channels as5

CV =
σ

µ
, (7)

where σ is the standard deviation over a data window and µ is the mean over the window. Kurtosis is computed as the fourth

moment within a data window.

Entropy E Shannon (1948) was computed separately for HH and HV channels as

E =−
255∑

k=0

pklog
2pk, (8)10

where pk’s are the proportions of each gray tone k within each computation window. Auto-correlation, ac Similä (1994);

Karvonen et al. (2005), was computed as

CA(k, l) =

∑
ij∈B (I(i− k,j− l)−µB)(I(i, j)−µB)

|B|σ2
B

, (9)

where I(k, l) is the pixel value at location (k,l). Mean over the directions horizontal, vertical and diagonal directions i.e.

(k, l) = (0,1), (k, l) = (1,0), (k, l) = (1,1) and (k, l) = (1,−1) was used to accomplish directional isotropy. The computation15

window is denoted by B.

Edge density D was computed for each segment (separately for HH and HV channels) after an edge detection by the Canny

algorithm Canny (1986) as

D =Ne/N, (10)

where Ne is the number of edge pixels with a segment and N is the segment size in pixels. The edges can often be regarded as20

fragments of an ridged area, when the imprints of the individual ridges disappear in the coarse SAR resolution.

In Fig. 3 computed features for an selected area in central Bay of Bothnia on 15 March 2013 are shown. In the selected area

highly and heavily ridged areas are present.

3.3 Random forest classification method

After trying several classification methods (local regression, logistic regression, General Additive Regression Model) we found25

out that the random forest (RF), Breiman (2001), approach produced good enough results to be of practical use. Random forest

is an ensemble learning method which can be applied to classification and regression. In RF we artificially generate several
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training sets from a single training set at our disposal using bootstrapping, grow a classification tree for each individual training

set, perform classification for each tree and then aggregate the results. The bootstrap aggregation is called also bagging. This

technique is efficient to reduce variance in high-variance predictions in the same manner than taking an average of samples is,

Breiman (2001).

For the classification of the daily ice data we divided our data of 37 days, see Section 2.3 , into the training and the test data5

sets. At least a time gap of three days was required between test and training data to avoid situations where the same SAR

scene and the associated features could be present in both the training data and the test data.

In our computations we have used the routines included in the commercial software Matlab.

3.3.1 Description of the algorithm

We outline the RF algorithm and the used notations. The classes are denoted by C = {1, . . . ,C} We have a training set X =10

{x1, . . . ,xN} where each sample xi consists of a feature vector fi and the corresponding class. When we take a bootstrap

sample fromX , we denote it Z∗. Our bootstrap sample Z∗ is of the same size as the original sample, so on average the fraction

63 % of the original samples of X belong to it, the rest being duplicates, Efron and Tibshirani (1993). The samples of X left

out from Z∗ (about 37% of the samples) are called out-of-bag (OOB) samples.

The classification tree is denoted Tb(Θb) with b ∈ {1, . . . ,B} and it uses Z∗ as its training data. Each end node n of Tb(Θb)15

has a class label which is the most frequent class in that node. The parameter Θb characterizes the bth random forest tree in

terms of split variables, split points at each node, and terminal node class label. The class label given by Tb(Θb) depends on

the feature vector fi which is used as input for the tree. We denote it Ĉb(fi,Θb) We generate B bootstrapped training sets and

relying on every training set we grow a classification tree Tb(Θb). A classification tree often achieves a rather low bias if it is

grown deep with many nodes without pruning, Hastie et. al. (2011) .20

The impurity measure is the Gini index G,

G= 1−
C∑

c=1

p(c|n)2

where p(c|n) is the proportion of the samples that belong to class c at a particular node n. G indicates how dominant the class

c is in the subtree after the split. A small Gini index value indicates that the subtree contains predominantly observations from

a single class. In the split the feature component of the vector fi with the smallest Gini index is utilised Ripley. (1996).25

In classification we record the classes predicted by the ensemble of B trees for a specific feature vector, and take a majority

vote. The most common class is the class predicted by the ensemble. Then the selected class has a smaller uncertainty than a

single classification tree, Hastie et. al. (2011), because an average has a smaller variance than a single variable. This is true

also for the correlated variables. If B is large enough the random forest algorithm avoids the tendency of over fitting the model

which often occurs in the context of the decision trees.30

The problem with bagging is that the grown trees are correlated. To reduce this correlation the RF has a randomisation step.

When building trees, each time a split in a tree is considered, a random sample of m predictors is chosen as split candidates
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from the full set of p predictors (m= 4 and p= 8 here). A new sample of m predictors is taken at each split. This step prevents

the same features to dominate every tree.

The flow of the random forest algorithm is described below.

Random forest algorithm for classification

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb(Θb) to the bootstrapped data, by recursively repeating the following steps for each

terminal node of the tree, until the minimum node size is reached.

i. Select m variables at random from the p variables.

ii. Determine the best variable and split-point among the m variables using the Gini index.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb(Θb)
B
1 }.

To classify a new feature vector fn:

Classification: Let Ĉb(fn,Θb) be the class prediction of the bth random-forest

tree. Then ĈB
rf (fn) = majority vote {Ĉb(fn,Θb)}B1 .

3.3.2 Selection of the features5

Because an ensemble of trees was used in RF and a large amount of features were utilized, the results were hard to interpret. To

analyse the impact of different features on the class estimation the importance measure was used. This measure is implemented

as follows. For each tree, the classification error on the OOB portion of the data is computed. This gives the baseline error

rate for the tree. Then in the OOB set we randomly permute one feature of the feature vector fi and simultaneously keep fixed

the other features in fi. We note that the marginal sampling distribution of the picked feature remains the same during the10

permutation. Then we recalculate the classification error in the OOB set. This classification error is compared to the baseline

error. Usually it is larger than the baseline error. The procedure is repeated for every feature separately. The decrease in

classification rate as a result of this permuting is averaged over all trees, and is used as a measure of the importance of the

chosen feature.

To select the features we run the RF algorithm for several feature combinations and for several different training data sets.15

The importance of the features as well as the classification accuracy was monitored. This empirical approach lead to the choice

of eight features from the computed 13 features, see Section 3.2. We ended up using the following eight features in deter-
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mining degree of ice ridging classes: HH-band autocorrelation (ACHH ), ice concentration (IC), edge density for HH-channel

(EDHH ), HH-band entropy (EHH ), HH-channel kurtosis (KHH ), (σo
HH ), HH-channel coefficient of variation (CVHH ) and

σo
HV .

In Fig. 4 is shown the relative importance of the different features as measured by their impact on the correct classification

of the out-of-bag samples when the training data covered the whole test period. The importance order of features in this data5

set is: ice concentration, HH-channel kurtosis , σo
HH , HH-channel edge density , HH-channel autocorrelation , HH-channel

entropy, HH-channel coefficient of variation and σo
HV . If the training data of just one month was used the relative importance

order of features varied to some extent. One feature, ice concentration, remained however the most influential single feature in

every case. This is comprehensible because when IC was between 80 % and 90 %, it was almost always assigned to the level

ice category (DIR=1). The weak importance of σo
HV is probably due to the relative narrow range of the σo

HV values.10

We conclude the RF section with a short summary on the major advantages of the RF algorithm : i) RF has the ability to

describe complex, nonlinear statistical relationships among variables, ii) RF reduces the uncertainty of the obtained estimate,

iii) RF reduces the possibility of over fitting.

The greatest weakness in RF is its relatively weak extrapolation property, Hastie et. al. (2011). This property can be seen from

the behaviour of the error rates. The RF classifier has a very low training error rate but the error rates increases significantly15

for the test set.

4 Results

4.1 Ice chart ridging categories vs. measurements

To give us a perspective on how well the ridging categories in the FIS charts describe the actual ridging we here present the

field campaign results. The campaigns in 1993, 1994 and 1997 summarised in Lensu (2003) measured surface profile only20

while the the fourth campaign during the period from 2 to 7 March 2011 profiled as also ice thickness. From surface profile

data ridge sails are identified by cutoff height and Rayleigh criterion according to which the shallower of two adjacent sails is

counted only when separated by a trough extending below half its height.Choosing a joint ridge sail height cutoff of 0.4 m a

large interannual variation is found for the four campaigns consisting of totally 1600 km of measurement line profile. Ridge

densities vary from 5.3/km to 26.7/km, while the sail height shows less variation, from 0.58 m to 0.66 m. To the densities25

affect mostly the windiness of the season, especially during the early stages with thinner ice types are less resistant against

deformation. There are regional differences, the densities increasing with the wind fetch towards the NE corner of the basin,

and also the coastal ridge fields often have the character of rubble fields with densities up to 100/km. Sail height depends on

average thickness characteristics of the basin, and also the presence of snow cover reduces the heights with a value equalling to

the snow thickness. However, as a first approximation the sail height for the Bay of Bothnia can be assumed to be 0.2 m above30

cutoff. In the interpretation of profile data it must be considered that a considerable fraction of ridges fall below the cutoff

and that the sail heights may become sampled from shallower sections of the sails. In field campaigns that typically select the

highest point of the sail the observed heights are typically 1-3 m and drilled keel depths 5-15 m, Kankaanpää (1997).
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To establish compatibility with the ice chart and ice model data, which employ a 1x1 nautical mile (NM) grid, the ridging

parameters from the helicopterborne electromagnetic (HEM) data were calculated as averages for the cells of the grid. Here the

comparison is made between ridge density and total thickness from HEM data and, on the other hand, the degree of ice riding

(DIR) of ice chart data. Although somewhat qualitative the DIR indices are estimates made by sea ice specialists and refer to

the Lagrangian ice chart regions corresponding to various formation and deformation phases of the ice cover. The reliability5

or their boundaries is usually high. The DIR value 1, corresponding level and rafted ice categories, had very small coverage

in the data, while DIR 2, the category of slightly ridged ice, was not found at all. The comparison is therefore made for the

DIR values 3 and 4, or moderately and severely ridged ice. The sail height retrieved by HEM was equal for these categories

while a clear difference was found for the ridge densities and total thicknesses, see Table 1. This indicates that such a rough

quantification of ridging can be done based on the indices.10

A more detailed picture can be obtained from comparisons of Figure 5 between degree of ice ridging and, on the other hand,

ridge sail density and total thickness from the HEM campaign. For ridge density the colorbar range is chosen to be from 12.7

to 21.5 or the average densities corresponding to indices 3 and 4 in Table 5 . Thickness colorbar was scaled similarly. Thus all

values below the lower averages are blue and all values above higher averages green. Above and below the colorbar range the

ridge density has still a wide range of variation as is seen from the histogram of Figure. The basic regional characteristics can15

be seen in all three datasets, however. The spatial distribution for the degree of ice riding was in a reasonably good agreement

with the HEM-retrieved quantities considering the uttermost simplicity of the former. The agreement for the total ice thickness

was somewhat better than agreement for the ridge density, which may be related to the fact that a large fraction of riding does

not show in the density due to the cutoff. The correspondence of sail density and total thickness was still good however, as is

expected from the fact that the ridge size, as measured by sail height, and ridge density show no clear correlation. This indicates20

that it is possible to derive relevant data on deformed ice thickness from spatially distributed, surface observable density-like

ridging characteristics together with climatologically typical values for ridge size. If ridging is close to isotropicity, the length

per square km of ridge sail above cutoff is estimable as pi/2 times ridge density, and further estimates on the fractional area

covered by sail rubble are obtained from average sail width. The largest differences between the degree of ice riding and HEM

quantities were found in the coastal ridge field extending from 64N 23E to SW. Both ridge density and average sail height were25

lower for this part in comparison with the extension of the same ridge field to NE from the said location. These values were

also similar to those found in the mid basin, so the missing separation of this coastal ridge field into two categories apparent

from the HEM data is clearly a shortcoming of the ice chart DIR data.

4.2 Monthly backscattering statistics

We concentrated in our analysis in the areas with IC over 80 %. The marginal ice zone (MIZ) is defined to consist of ice areas30

with IC from 15 % be 80 %, see e.g. Strong (2012). In areas with IC 80− 90 % the amount of open water area is rather high

and it affects the backscattering statistics in a complicated manner depending on wind conditions and the spatial distribution of

ice floes. Almost all areas with IC in this range belonged to level ice polygons in our data set. The level ice category (DIR=1)
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covered well over 50 % of all the ice areas during our test period. Because the resolution in the SAR mosaics were 500 m, the

averaging of SAR pixels suppressed the fine scale (100 m) variation present especially in the ridged zones.

We first looked how the σo
HH distribution changed monthly from January to March in the two main ice categories: level ice

(DIR= 1) and ridged ice (DIR > 1), see Fig 6. In the beginning of January level ice appeared mainly near the coast of the

Sea of Bothnia and the dominance of mostly thin ice in the Sea of Bothnia continued up to the middle of February whereas in5

the Bay of Bothnia appeared also ridged ice areas throughout the whole test period. A significant fraction of the level ice pixels

had σo
HH value below -18 dB indicating thin smooth ice. It is well-known that backscattering from thin ice can also generate

large σo
HH values ?. Also, the presence of the level ice areas with a relatively low SIC (80− 90 %) meant that open water

patches affected the level ice backscattering statistics generating both high and low σo
HH values. The values of level ice σo

HH

above -18 dB were rather evenly distributed in January. The backscattering from ridged ice areas had a large peak at -16.5 dB10

and most of the remaining pixel values ranged from -16 dB to -12 dB.

In February σo
HH there still was present a sharp peak around -20 dB in the level ice area indicating very thin ice but most of

σo
HH values had spread between -16 dB and -11 dB. In the ridged areas a majority of σo

HH values were in the range between

-17 dB and -12 dB. The mean and median values of σo
HH for level ice areas and ridged areas were almost identical in January

and February. In March the backscattering statistics for level and ridged areas showed a clearer discrepancy. The level ice σo
HH15

values were distributed rather evenly from -20 dB to -10 dB whereas the σo
HH values from ridged areas were concentrated in

the range from -15 dB to -11 dB. The average value from the ridged areas was over 2 dB higher than that of the level ice areas

unlike in the previous months. There was a significant increase in the magnitude of σo
HH from ridged areas whereas this was

not the case for the level ice σo value distribution.

Based on Fig. 6 it was obvious that the magnitude of σo
HH alone could not be an efficient predictor in the estimation of20

the DIR value in January and February. We reached the same conclusion also in Section 3.3.2 when using the importance of

feature measure in the connection with the RF classifier.

We assume that the small separation in the σo
HH values originating from level ice and deformed ice during the first two

test months was due to two major reasons. As mentioned earlier the level ice areas had mostly IC less than 90%. So the

backscattering from open water had a significant role in the case of level ice. In addition the level ice area ( DIR= 1) had25

significant uncertainties in the FMI charts . The ice analysts responsible for the charts told us that in several cases it was

difficult, nearly impossible, to discriminate reliably between level ice and slightly ridged ice (DIR= 2). In these cases they

usually chose the level ice category if the icebreaker reports did not indicate any difficulties for merchant ships. If this kind of

difficulties were taking place, a ridged ice category was chosen.

Considering the contrast between level and ridged ice areas the situation changed gradually in February and March to-30

wards a more distinct separation between these ice types. We shall analyze the DIR charts separately for the period of strong

thermodynamic growth (January, February) and more stable winter conditions (March) in Section 4.3 .

The examination of the monthly HV distributions, see Fig. 7, confirms our findings for the HH distribution. In January and

February the values of σo
HV from level ice areas were close to the noise floor (−28dB) and, hence, too uninformative for

a meaningful analysis. In the ridged areas σo
HV were 2− 3dB higher but still in general rather low indicating a low sea ice35
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surface roughness. In March the HV distributions both in level ice areas and ridged areas were on average about 1−2dB higher

than in the previous months. Also the contrast in the backscattering between ridged and level ice was more significant. As a

consequence the σo
HV values affected the classification result in March but were not useful in the earlier months.

4.3 Classification results for several ridging categories

There was a fundamental imbalance between the sample sizes representing level ice and deformed ice classes. The samples5

from all the deformed ice classes formed about 40 % of the ice samples. If we had required that all the classes were of equal

size in the training data, the amount of observations per ice category would have been low, e.g. less than 20 % of the level ice

samples would have been utilized. When assessing the results we will keep in our mind the highly different sizes of the ice

classes.

We run all our random forest classifications with the same set of tuning parameters for routine TreeBagger Matlab (2016).10

From the set of eight (p= 8) features we randomly chose m= 4 features to be used in a split. Often the value m=
√
p, i.e.

m= 3 here, would have been recommended Hastie et. al. (2011). However, we noted that slightly better results were obtained

with m= 4 for our data set. Another fixed option was that the minimum number of data points in the end nodes was set to ten.

We grew 200 trees during the classification. Results with more decision trees did not yield any significant improvement of the

error rates.15

In first phase we investigated the capacity of the RF classifier to separate between level and deformed ice. Data of all the

three months were included in the analyzed data set. The results are presented in Table 2. The overall classification rate was

82 % for the whole winter.

Next we examined the classification of all the four ridging categories through the three–month period. The training and test

data sets had been selected from each month in our data set. The overall classification rate for the test period was 71%. Looking20

at the confusion matrix in Table 3 we can observe that the level ice category (93%) had a very high classification rate. The

classification of the three categories for ridged ice was more challenging. The ridged ice clategory (DIR= 3) had a correct

mode ice class (45%) but high misclassification rate (55%) and over 30% of the observations were confused with level ice. The

slightly ridged ice (DIR= 2) was poorly distinguished. Only in the 15 % of the cases is was detected correctly. Most samples

(42 %) were assigned to the level ice class which in the light of the previous discussion could be expected, i.e. the preference25

among the FIS ice analysts to use level ice category over slightly ridged ice in the manual ice charts. The ridged ice category

with the most accurate classification rate (59 %) was the heavily ridged ice category DIR= 4.

To obtain more information on how the adopted approach works in rapidly changing ice conditions and on the other hand in

more stable winter conditions we classified all three test months separately so that the training and testing data were collected

during the same month. The overall accuracy of the monthly results varied largely being at its lowest in February (63 %),30

higher in January (83 %) and March (81 %). The corresponding Cohen’s kappa figures were 0.60 ( substantial agreement) ,

0.52 (moderate agreement) and 0.68 (substantial agreement). The separation between all ice categories was easiest to perform

in January (overall accuracy 83 %) where basically just three DIR categories appeared. An evidence that the definition of
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different DIR categories were inconsistent with each other in January and February was that in these months the detection rate

stayed below 100 % for the training data in the RF classification but it was 100 % for the March training data.

In each month level ice was the dominant ice category being over 50 % of all ice covered area. The DIR 2 category covered

from 6 % to 19 % of the ice area depending on the month. In none of the months it was successfully detected due to its

ambivalent definition with respect to the DIR 1 category. The DIR 3 category was successfully detected in January when its5

areal coverage was large (21 %) and in March when the boundaries between different ice categories were best defined during

the test period. The heavily ridged ice fields (DIR=4) were usually well found except in January when such ridged areas were

rare (about 1 %). A possible explanation for the lowest accuracy rate in February was that then the boundaries between different

DIR regions were often visually rather difficult to discern in the SAR imagery according to our experience. Fig. 8 shows the

variation of the detection rate for each DIR category in all the classification results. The most distinct feature in the results is10

the consistently poor detection rate for DIR 2.

In Fig. 9 we can see the Baltic Sea ice classification result (left) for a dual-pol pair of SAR mosaics from 9th of February

2013 (Fig. 2 top). Also the reference DIR chart is shown for comparison (bottom left). The automated DIR charts produced

agreed well with the FIS ice charts for DIR values 1 and 3. However, the automated chart estimated a large fraction of DIR

2 category ice to DIR class 4. The DIR categories contained detailed markings of the cracks and openings in the central Bay15

of Bothnia which were detected by the SAR chart but not from the FIS chart. We remark that the SAR mosaic from 9th of

February looked very similar to the one from 7th of February (two days earlier), when the same cracks / openings can be found,

but the corresponding FIS ice chart DIR showedDIR= 4 in the areas to which was now assignedDIR= 3. This can be taken

as an example of the subjectivity which is inherent to the manual ice charts.

There is a good overall agreement between the FIS chart and our DIR classification in Fig. 11. Most of the differences occur20

in the Bothnian Sea. There the FIS chart indicates mostly level ice and to some extent slightly ridged ice. On the other hand,

the classification assigned to some FIS level ice areas the ridged ice and heavily ridged ice categories. Based on the SAR HH

and HV images (see Fig. 10) those areas represent broken ice fields although the ridging intensity is hard to assess visually.

5 Discussion and Conclusions

For navigation in sea ice, the Degree of Ice Deformation parameter is one of the most useful parameters, even for the less25

experienced ship captains, because it is basically indicating if a vessel can pass or not through a block of ice, by knowing also

the ship’s characteristics. Subsequently, the DIR can function as a practical approximation for the more general Risk index

Outcome (RIO) IMO (2016) for vessels operating in ice, when the existing ice parameters available are not sufficient (e.g. ice

thickness, concentration). We have showed here that the DIR parameter can be estimated rather well using the SAR texture

features and ice concentration when compared to the values extracted from the manually prepared FIS ice charts. The used30

features describe versatile statistics of σo variation in the SAR imagery. The DIR classification is a suitable operation for a

SAR based approach because the C-band SAR is sensitive to the large scale surface roughness, i.e ridging.

16

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-127
Manuscript under review for journal The Cryosphere
Discussion started: 28 July 2017
c© Author(s) 2017. CC BY 4.0 License.



Our first goal was to discriminate between ridged ice areas and level ice. This objective was reached with high accuracy

(82 %). The more ambitious goal to estimate the different DIR categories succeeded reasonably well. Especially the estimation

procedure worked well in midwinter when the ice conditions were stable and sea ice at its thickest. The promising results in

the DIR estimation are important because our field campaign data demonstrated that the FIS DIR numeral serves as an efficient

indicator between the relative ridge density classes.5

When we consider the purpose of the ice charts one significant factor must be considered. This is that in the ice infested

areas two types of ships proceed: ships with the assistance of an icebreaker or independently proceeding ships. In the Baltic

Sea most of the merchant ships need the icebreaker assistance. Ships of the highest ice class, 1A Super, are designed to operate

in difficult ice conditions independently. The FIS ice charts are targeted to the ships which advance in difficult ice conditions

as a convoy following the icebreaker. Based on the discussions with the ice analysts the following remark can be made: if the10

ice conditions do not pose a realistic risk for icebreakers to get stuck, in the FIS ice charts they are often assigned to smaller

degree of ice riding, even if these same areas may exhibit a considerable obstacle for independent ships. Hence, the availability

of the icebreaker assistance affects the DIR classifications in the FIS ice charts.

The primary objective of our classification algorithm is to separate the severe ice conditions from the easier ice conditions. To

reach this goal it relies only on the SAR statistics. In some cases this may lead to differences between the FIS ice charts and our15

classification results because the FIS charts take into account the icebreaker factor not seen in the SAR imagery. Hence, these

two data sets can be interpreted from slightly different perspectives. An example of this difference is our earlier discussion

related to Fig. 10. As we noticed there were ice areas in the Bothnian Sea areas marked as slightly ridged ice (DIR=2) in

the FIS DIR chart, whereas our automated DIR chart showed higher degree of ridging for these areas. Our estimates closely

followed the SAR features and the deformed ice areas are indicated in our DIR chart unlike in the FIS chart. The mentioned20

ridged areas very likely would not be difficult to break by an icebreaker. Thus, they are assigned in the FIS chart to the DIR

2 category. If we consider a weaker vessel trying to pass independently through the same areas, the automated chart would be

more informative, showing more accurately the passages which are difficult or easy to navigate. One essential advantage of the

automated DIR charts over the FIS charts is that leads and small level ice areas between ridged ice zones are present in these

charts but typically not in the FIS charts.25

Before setting up an operational detector for the Baltic Sea area, we need to test our algorithm with at least two more winters

data and optimize it for the best possible result. In an operational mode we can add to our training data the SAR/FIS IC data

collected during days before the day FIS prepares its ice chart. The freshest classification result available for FIS is the DIR

classification based on the SAR and the FIS IC data from the previous day. This should improve the classification accuracy of

the DIR chart. Currently our training data rely on older data.30

Our algorithm can be extended for use in Arctic Ocean, where there is a higher demand for reliable ice information on

prevailing ice conditions, and icebreaker assistance often not available in a reasonable time. By having an automated DIR

chart utilizing the fine resolution (100 m or less) SAR data and qualitatively presenting the suitability of the ice conditions for

navigation, would be a remarkable gain for Arctic shipping. E. g. in the Kara Sea year-round shipping will significantly increase

in the coming years through the high volume liquefied natural gas (LNG) production in the Yamal Peninsula. For Arctic sea35
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areas, however, the algorithm would be more difficult to validate without having knowledge of the true areal DIR values. The

current Russian Ice Charts contain only the general WMO sea ice classes without any indication of degree of ridging. Perhaps

the regional sea ice model implemented for the Kara Sea (Dr. Andrea Gierisch, private communication) will be helpful in the

development of an automated classifier. One alternative is also to use the Baltic Sea ice data as a first trial to train the algorithm

for the Arctic conditions.5
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Table 1. Comparison of ridge statistical parameters with ice chart degrees of ice ridging.

DIR 3 4

Number of cells [km2] 590 1079

Ridge sail height [m] 0.61 0.61

Ridge density [1/km] 12.7 21.5

Total thickness [m] 0.76 1.08
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Table 2. Confusion matrix for the level ice vs. ridged ice classification for the test period.

FMI Sample size Ice category

Ice cateogory N level ridged

level 59 % 87 % 13 %

ridged 41 % 24 % 76 %

23

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-127
Manuscript under review for journal The Cryosphere
Discussion started: 28 July 2017
c© Author(s) 2017. CC BY 4.0 License.



Table 3. Confusion matrix for the RF classification for the test period.

FMI sample size RF classes

DIR N 1 2 3 4

1 59 % 93 % 1 % 4 % 2 %

2 14 % 42 % 15 % 28 % 15 %

3 15 % 32 % 5 % 45 % 18 %

4 12 % 18 % 3 % 20 % 59 %
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Table 4. Confusion matrix for the RF classification in January

FMI sample size RF classes

DIR N 1 2 3 4

1 72 % 94 % 2 % 4 % 0 %

2 6 % 48 % 15 % 36 % 0 %

3 21 % 35 % 1 % 64 % 0 %

4 1 % 47 % 0 % 21 % 32%
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Table 5. Confusion matrix for the RF classification in February

FMI sample size RF classes

DIR N 1 2 3 4

1 55 % 92 % 1 % 5 % 2 %

2 19 % 46 % 13 % 21 % 20 %

3 17 % 21 % 6 % 29 % 44 %

4 9 % 18 % 16 % 16 % 51 %
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Table 6. Confusion matrix for the RF classification in March

FMI sample size RF classes

DIR N 1 2 3 4

1 59 % 92 % 4 % 2 % 2 %

2 9 % 16 % 32 % 21 % 31 %

3 10 % 44 % 4 % 51 % 1 %

4 22 % 4 % 2 % 6 % 88 %
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Figure Captions

Figure 1. Example of RS-2 dual polarized SAR image mosaic (left: HH, middle HV) over the Baltic Sea on 15 March 2013

and the corresponding DIR chart (right) showing manually drawn polygons of different degrees of ice ridging, including the

marginal ice zone detection mask based on ice concentration values between 25% and 80% and open-water mask based on ice

concentration values smaller than 25%.5

Figure 2. Example of RS2 SAR data from 9th of February 2013 in HH (top left) and HV (top right) polarizations together

with the segmentation result (bottom left) and the Ice Concentration Chart.

Figure 3. Example of SAR features computed for central BOB. a-b) original SAR in 500m resolution; c) Segmentation result

of the first principal component of the original HH and HV SAR channels; d) FIS SIC (1-100%); e)FIS DIR (1-4); f-g)segment

means; h) ACHH ; i)ACHV ; j)EHH ; k)EHV ; l) CVHH ; m)CVHV ; n)EDHH ; o)EDHV ; p)KHH ; q)KHV .10

Figure 4. The importance of different features when the training data covered the whole test period. The order of the features

is: ACHH , IC, EDHH , EHH , KHH , σo
HH , CVHH , σo

HV , see text for explanations.

Figure 5. Ridge density variation in the test area (upper panel, left), HEM thickness measurements (upper panel, right), DIR

indices (lower panel, left), ridge density histogram in one 1x1 NM cell (lower panel, right).

Figure 6. The monthly HH distribution for level (dashed line) and ridged (solid line) ice areas. The results are for January15

(left), February (middle), March (right) in 2013.

Figure 7. The monthly HV distribution for level (dashed line) and ridged (solid line) ice areas. The results are for January

(left), February (middle), March (right) in 2013.

Figure 8. The detection rates for the different DIR categories in all the classification.

Figure 9. Degree of Ice Ridging extracted from the digitized Finnish Ice Charts (bottom left) and the result of estimated20

DIR based on our RF approach. The DIR charts includes the marginal ice zones (25%<IC<80%) extracted from the Ice

Concentration charts (see Fig. 2).

Figure 10. Example of RS2 SAR data from 15th of March 2013 in HH (top left) and HV (top right) polarizations. Middle

left: MRF MMD Segmentation result for the HH-HV PCA component. Middle right: Ice Concentration Chart extracted from

the Finnish Ice Chart.25

Figure 11. Degree of Ice Ridging extracted from the digitized Finnish Ice Charts Bottom right: Result of Estimated DIR based

on our RF approach. The DIR charts includes the marginal ice zones (25%<IC<80%) extracted from the Ice Concentration

charts (see Fig. 10).
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Figure 1. Example of RS-2 dual polarized SAR image mosaic (left: HH, middle HV) over the Baltic Sea on 15 March 2013 and the

corresponding DIR chart (right) showing manually drawn polygons of different degrees of ice ridging, including the marginal ice zone

detection mask based on ice concentration values between 25% and 80% and open-water mask based on ice concentration values smaller

than 25%.
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Figure 2. Example of RS2 SAR data from 9th February 2013 in HH (top left) and HV (top right) polarizations together with the segmentation

result (bottom left) and the Ice Concentration Chart.
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Figure 3. Example of SAR features computed for central BOB. a-b) original SAR HH and HV in 500m resolution; c) Segmentation result

of the first principal component of the original HH and HV SAR channels; d) FIS SIC (1-100%); e)FIS DIR (1-4); f-g)segment means; h)

ACHH ; i)ACHV ; j)EHH ; k)EHV ; l) CVHH ; m)CVHV ; n)EDHH ; o)EDHV ; p)KHH ; q)KHV .
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Figure 4. The importance of different features when the training data covered the whole test period. The order of the features is: ACHH , IC,

EDHH , EHH , KHH , σo
HH , CVHH , σo

HV , see text for explanations.
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Figure 5. Ridge density variation in the test area (upper panel, left), HEM thickness measurements (upper panel, right), DIR indices (lower

panel, left), ridge density histogram in one 1x1 NM cell (lower panel, right).
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Figure 6. The monthly HH distribution for level (dashed line) and ridged (solid line) ice areas. The results are for January (left), February

(middle), March (right) in 2013.
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Figure 7. The monthly HV distribution for level (dashed line) and ridged (solid line) ice areas. The results are for January (left), February

(middle), March (right) in 2013.

35

The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-127
Manuscript under review for journal The Cryosphere
Discussion started: 28 July 2017
c© Author(s) 2017. CC BY 4.0 License.



Figure 8. The detection rates for the different DIR categories in all the classification.
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Figure 9. Degree of Ice Ridging extracted from the digitized Finnish Ice Charts on 9th February 2013 (left) and the result of estimated DIR

based on our RF approach (right). The DIR charts includes the marginal ice zones (25%<IC<80%) extracted from the Ice Concentration

charts (see Fig. 2).
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Figure 10. Example of RS2 SAR data on 15th March 2013 in HH (top left) and HV (top right) polarizations. Middle left: MRF MMD

Segmentation result for the HH-HV PCA component. Middle right: Ice Concentration Chart extracted from the Finnish Ice Chart.
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Figure 11. Degree of Ice Ridging extracted from the digitized Finnish Ice Charts on 15th March 2013 (left); Result of Estimated DIR based

on our RF approach (right). The DIR charts includes the marginal ice zones (25%<IC<80%) extracted from the Ice Concentration charts (see

Fig. 10).
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